The 8 Best Microscopes

Updated May 19, 2018 by Daniel Imperiale

Best High-End
Best Mid-Range
Best Inexpensive
We spent 41 hours on research, videography, and editing, to review the top choices for this wiki. Whether you have a young, budding scientist in the family with an interest in magnification, or you're a professional researcher or teacher looking for a tool to enhance your trade, our selection of microscopes, ranked by special features, magnification power, and price, should include the perfect model for your requirements. When users buy our independently chosen editorial picks, we may earn commissions to support our work. Skip to the best microscope on Amazon.

8. Dino-Lite Pro AM413T

7. AmScope T490B

6. AmScope M158C-E Compound Monocular

5. Omax S30L

4. Omax LP-50 40x-2000x Binocular

3. AmScope SM-4TZ-144A

2. AmScope SE306R-PZ Forward Binocular

1. Aven Cyclops Digital

Two Magnifiers Are Better Than One

It's probably safe to assume that, at some point in your life, you've used a magnifying glass.

Perhaps you have fond memories of your grandmother struggling to read the small print in her newspaper and reaching for this handy handheld device. Or, maybe you wear those simple reading glasses from the pharmacy.

Then again, maybe you just burned a lot of insects by magnifying the sun.

Whatever your exposure to magnification, the principal applied here is more or less identical to the principal applied in the building of any standard microscope.

You may notice that there are two sets of magnifiers on a microscope.

The first is the objective lens, which is the little tube that points directly at your specimen closest to the stage where the slide is laid. The second is the eyepiece, a longer tube used to further magnify the image coming up through the objective.

There are usually multiple pieces of glass in both the objective and eyepiece, each meant to refine your image to perfection by the time it reaches the final, most important lens: your eye (or a digital image sensor).

Put Your Decision Under, Well, A Microscope

What began as a brilliant but essentially simple invention has advanced at incredible rates, bolstered first by glass cutting and lens-making refinements, and recently by advances in image capturing technology.

So, with all the available bells and whistles, which microscope do you need?

Let me get this out of the way: You don't need an electron microscope. If you did, you wouldn't be researching microscopes online, you'd be arguing over the potential benefits of such a purchase with your fellow PhDs as you built your own evil laboratory cut deep into a mountain in the uncharted territories of northern Russia.

But that still leaves you with a ton of options.

The easy question? What are you going to look at? That ought to tell you how much magnification you're going to need, which will narrow the field significantly.

The most important question (in my opinion)? How do you want to view your specimen? Binocular microscopes are my preference because I find it more comfortable using both eyes. You might want one eye on your specimen and the other on the notes you're taking. Monocular, then, is right for you.

There's also the question of preservation, and the better imaging specs you can get, the longer it will be before your microscope starts to feel obsolete. These images are the best way to share your findings with colleagues or students, and if they can be captured sharply, or even shown live on a monitor–well, let's just say they won't need a microscope to see the smile on your face.

Finally, there's the question of what's around the corner. Since one of the most expensive part of any microscope is the assembly of finely cut and ground glass elements, removing one or two of those could cut costs. Some of these glass elements exist to bend and straighten light that gets curved during magnification.

So, the advent of the curved image sensor, which Sony's camera R&D departments have patented, would remove the need to straighten out your light. That could both cut down on cost and increase image clarity.

Centuries of Refinement

In the late 16th century, a pair of Dutch spectacle makers came up with a crude compound microscope with an internal lens at each end. Its magnification was minimal and its images were blurry, but it was the start of something very important.

While magnification had been around for centuries at this point, it was in the combining of lenses that the evolution of the microscope began. These are what we refer to today as compound microscopes because the magnifying power of each glass element is compounded by the next.

The combination and positioning of the glass elements was refined over the centuries, as were the methods for cutting and polishing the glass. This resulted in higher and higher degrees of magnification, and, one can assume, an ever increasing fear of germs (I kid, of course. Germs weren't even suggested until Pasteur's work in the 1860s).

Now, with the advents of LED lighting and smaller camera technology, the need for higher quality optics is giving way to the power of CMOS camera sensors.

In time, the lens elements will likely simplify, or come to resemble camera lenses even more than they do now. But today's combination of sensor and lens technology makes for the highest powered microscopes we could imagine, enlarging our perspective daily.


Statistics and Editorial Log

0
Paid Placements
5
Editors
41
Hours
34,501
Users
50
Revisions

Recent Update Frequency


help support our research


patreon logoezvid wiki logo small

Last updated on May 19, 2018 by Daniel Imperiale

Daniel is a writer, actor, and director living in Los Angeles, CA. He spent a large portion of his 20s roaming the country in search of new experiences, taking on odd jobs in the strangest places, studying at incredible schools, and making art with empathy and curiosity.


Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For our full ranking methodology, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.