Updated January 27, 2020 by Kaivaan Kermani

The 8 Best Voltage Converters

video play icon
Best High-End
Best Mid-Range
Best Inexpensive

This wiki has been updated 23 times since it was first published in April of 2015. If you're addicted to your phone, tablet, or laptop, don't get on a plane without one of these handy and feature-rich voltage converters, to make sure you can power up your devices wherever you're headed. We've included models that are compact enough to slip in your hand luggage, and larger, more powerful ones that you may need for higher-draw appliances, like hair dryers. When users buy our independently chosen editorial picks, we may earn commissions to help fund the Wiki. Skip to the best voltage converter on Amazon.

8. LiteFuze LC-300EU

7. Foval Power Step Down

6. Sokoo Pocket

5. Bestek 200W

4. Castries Travel Combo

3. PowerJC 1875W

2. ELC T-5000

1. TryAce 2000W

Editor's Notes

January 24, 2020:

There were a variety of good options here from before the update, and voltage converters, especially more compact models with lower power ratings, generally don’t age as badly as other electronics (at least not over relatively short time periods), since step-up/down conversion relies on transformers that use laminated iron cores - not quite like many devices that benefit from Moore’s law and advances in semiconductor technology to get smaller and more efficient. A lot of the models from 2013/14 like the LiteFuze LC-300EU and Bestek 200W are thus still good options.

I’ve introduced a couple of newer models like the TryAce 2000W and Castries Travel Combo (both 2kW options, which are perfect for higher-end blenders like Blendtec and Vitamix). The Castries only has one socket for step-conversion, and you'll notice that if you want multiple sockets, you'll have to get a bigger model. I still think that the Castries is a handy option though, since many gadgets (especially smaller gadgets) are dual-voltage nowadays, and you can plug your dual-voltage device into one slot and use the other as a converter.

Also, I felt that this list was missing some high-powered options, save for the ultra-high-capacity (5kW) ELC T-5000, which I’ve updated. I’ve also taken out the Seven Star which was a bit of an outdated (and quite ugly) 500W converter, and though I didn’t add a direct replacement (with a similar-capacity model), I have introduced the Sokoo Pocket instead, which I think looks very smart, aside from being so small and easy to carry around.

Bear in mind that converters are not adapters - an adapter simply modifies your plug to fit a different outlet, without any concern for whether the voltage is suitable for your device. These are fine for the many devices that operate on dual voltage (110-240V ac) nowadays, but not all devices are made to adapt to different voltages - certain devices like hair straighteners, dryers, blenders, mixers and larger devices tend to be single voltage. It’s easy to get confused, because many single-plug converters like the TryAce tend to be as small like adapters, but remember to always check the labels, since not all adapters also double as converters.

Powerless Abroad

Think of each hand as its own wire, and of your fingers as what physicists call turns, or the times that a wire wraps around a core.

A voltage converter employs some incredibly complicated electromagnetic principals. Without getting into the particulars of ideal and real electrical transformation, we can understand the process of taking a 110 V outlet and getting 220 V out of it (and vice versa) by simply grabbing hold of a steering wheel.

When you use a voltage converter for electrical transformation, you send an alternating current through one wire that's wrapped around a one side of a soft iron core which is shaped like a square doughnut. There's another wire wrapped around the other side of the core, directly across from the first.

To make sense of this, take your hands and put them on an imaginary steering wheel in front of yourself. Imagine the wheel is actually square if you want to get closer to the reality of the transformer, and put your hands in the 3 o'clock and 9 o'clock positions. Now, my driving instructor taught me never to wrap my thumbs around the steering wheel, so if I got in a wreck I wouldn't shatter the bones in my thumb joints. It was good advice, so we're only going to consider the other four fingers on each hand (this also makes the math a lot easier).

At this point, you've got four fingers wrapped around each side of the steering wheel. Think of each hand as its own wire, and of your fingers as what physicists call turns, or the times that a wire wraps around a core. Imagine you pass a current into your right hand at 110 V. That current will pass over to the left hand through a process called electromagnetic induction, which the iron core amplifies and stabilizes. With four turns on each side, you get 110 V in the right hand and 110 V in the left.

Now, take two fingers away on the right hand. Suddenly, you have twice as many turns on the left side of the core as on the right. If you pass the same 110 V through the right hand with its two fingers, the doubled turns on the left side will give you twice as much voltage. 110 V becomes 220 V, and you've effectively transformed your electrical outlet. If you send the current through in the opposite direction, you will effectively half the voltage.

This is the case in an ideal transformer Transformers in practice lose voltage for a variety of reasons. With that in mind, the manufacturers of these converters take many mathematical pains to land your transformation in a safe and useful voltage range.

Blending Currents

I, for one, cannot live without my blender. I spent a ridiculous amount of money on it, and I eat at least one meal out of it each day. Staying abroad for any length of time is expensive enough; knocking back a few homemade smoothies each day saves you countless dollars, or euros, or pounds–whatever the currency. And I do, in fact, travel with this blender.

I spent a ridiculous amount of money on it, and I eat at least one meal out of it each day.

The problem is that the blender runs about 1,400 watts at 11.5 amps, and it's exclusively a 120 V unit. You may or may not be aware, you can derive the wattage of your appliances by multiplying their operating voltage range by their current, measured in amps. So, 11.5 amps x 120 V = 1,380 watts, which I rounded up to 1,400. If I subjected that motor to a 240 V outlet in Europe, I'd be introducing it to twice the wattage, at 2,760 watts. Not exactly great for the blender.

To safely convert an appliance of this magnitude (your irons, hair driers, and straightening/curling irons also eat up a lot of watts), you want to get a transformer than can handle two to three times the wattage of your most power-hungry appliance.

As you peruse the available converters on our list, ask yourself what the highest wattage is for which you need conversion. Then find a converter that at least doubles that capability. If you don't see the wattage listed on your appliance, look for a measure of the unit's amps and apply the formula above.

Transformed From The Outset

Voltage conversion was born right alongside our control of electrical power itself. Most economically transmitted sources of electricity are too powerful to practically meet any household application, so even the earliest alternating currents had to undergo transformation before anyone could make use of them.

Use a higher voltage at a higher current and that wire will get exceptionally hot as energy diffuses through it.

When electricity travels along a wire, higher voltages traveling at lower currents will lose less power as they move through said wire. Use a higher voltage at a higher current and that wire will get exceptionally hot as energy diffuses through it. This is particularly useful in toasters and hair driers, but it wouldn't work so well for a bird alighting on a power line, nor would it be particularly efficient.

Thomas Edison, who's often given a blanket credit for anything and everything to do with electricity, actually made most of his discoveries and drove the majority of his inventions forward using direct current, which proved far inferior than the combination of alternating current and transformation.

So, from the earliest attempts at transmitting alternating currents in the late 1800s, Edison's competitors used higher voltages along with transformers to regulate the voltage of electricity entering an appliance, a method which quickly became the standard.

Statistics and Editorial Log

Paid Placements
Rendering Hours

Granular Revision Frequency

Kaivaan Kermani
Last updated on January 27, 2020 by Kaivaan Kermani

Kaivaan grew up in a little town called York in the north of England, though he was whisked off to sunny Jamaica at the age of 14, where he attended high school. After graduating, he returned to the UK to study electronic engineering at the University of Warwick, where he became the chief editor for the engineering society’s flagship magazine. A couple of uninspiring internships in engineering later however, and after some time spent soul-searching and traveling across Asia and East Africa, he he now lives and works in in Dubai.

Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For more information on our rankings, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.