Updated October 12, 2018 by Lydia Chipman

The 10 Best 3D Printer Filaments

video play icon
Best High-End
Best Mid-Range
Best Inexpensive

This wiki has been updated 14 times since it was first published in June of 2016. Now that 3D printers can be used to make not only oodles of high-tech machine parts and plastic doodads, but also all manner of exotic creations, from edibles to prostheses, you can choose from a plethora of filament types and materials for your latest desktop manufacturing project. We've compiled a shortlist of the best-of-the-best brands and options out there for you. When users buy our independently chosen editorial choices, we may earn commissions to help fund the Wiki. Skip to the best 3d printer filament on Amazon.

10. Proto-Pasta Carbon Fiber

9. Ninjaflex TPU

8. 3D Solutech

7. Verbatim Primalloy TPE

6. Bizard 3D Tech

5. Taulman 3D

4. Hatchbox Spools

3. Form Futura

2. Gizmo Dorks

1. Rigid Ink

The Beginnings Of A New Technology

While the general population was barely aware of it, the next chapter of building and creation was unfolding in the tech sector.

The beauty of great science fiction is its basis in fundamentals that, while not necessarily real, are at least plausible. So, it takes a measure of creative talent, as well as incredible foresight, for the writers of mid-20th-century fiction such as Star Trek and The Jetsons to dream up fanciful machines that, just a half-century later, aren't actually so far from reality. Of course, we aren't quite on the verge of forming a balanced breakfast using a stockpile of free electrons, let alone printing lower-class citizens in The Fifth Element's bioprinting workshop. But in 2001, Jurassic Park 3 showed us a more realistic interpretation, when (spoiler alert) the protagonist saves the day using a replica velociraptor larynx formed from only schematics — a setup surprisingly comparable to where we're at today. But what exactly is 3D printing and how'd it come about?

The idea's been around since well before it reached the Starship Enterprise, and in 1981 a Japanese scientist named Dr. Hideo Kodama first began to explore it from a realistic perspective. With the technology to support his ideas still years away, the movement mostly languished until 1986. That's when American engineer Charles Hull filed a patent for a stereolithography apparatus, the first-ever machine to form a complete physical part based solely on a digital file. Chuck went on to found the 3D Systems Corporation, which continues to be a major industry presence in the modern era.

The field truly exploded in the early 21st century. While the general population was barely aware of it, the next chapter of building and creation was unfolding in the tech sector. Printers were designed that could print copies of themselves (or at least most of their components), and then robots took over the world. Just kidding. We hope. Actually, that's when a true 3D printing renaissance took place, beginning around when Hull's most important patents wore off in 2009. In the years since, the field has exploded, as engineering firms of all sizes continue to offer countless crowd-funded and corporate-backed designs, some of which are succeeding and some of which flopped fantastically. But one thing is certain: 3D printing is here, and it isn't going anywhere, aside from deeper into the fabric and infrastructure of our world.

How It Works

While it's rather new, and often used in advanced applications, 3D printing isn't too fundamentally complex. The most common varieties work a bit like a normal printer, laying down layer after layer of the appropriate material, all according to the programmed specifications. Every dimension and angle are charted as data that's translated to a physical space, much like a milling machine. The exact opposite of the milling process, however, printing adds material, whereas subtractive manufacturing carves it away.

Every dimension and angle are charted as data that's translated to a physical space, much like a milling machine.

Typical stereolithography occurs as a light-sensitive liquid polymer is injected from a nozzle onto the machine's bed, where a UV field causes the photopolymer to take shape and solidify. This spraying and hardening repeats in layers until the entire object has been formed. A process called "slicing" involves scanning production-ready objects in three dimensions and digitally breaking them down into a multitude of individual, near-two-dimensional slices, which are then translated into the instructions needed for replication.

Another, more advanced type of machine involves a layer of medium, often a powdered substance similar to sand, which is kept at a specified depth across the machine's base as a laser focuses on the printing area. The laser reacts with the sand to form a solid compound, and once that entire slice is completed, the level of the floor underneath the sand is raised, and the next layer begun. This method works well for high-strength construction components, as metal must be dissolved and re-formed for maximum resilience.

What We're Doing With It

Just like the USS Enterprise was incapable of constructing the famed Romulan Ale, home cooks currently don't have access to a machine that instantly assembles food and drink at their request. But that's not to say that complex components of various types are out of reach. A few decades have been a lifetime for this fledgling technology, which is rapidly positioning itself as a building block of a more efficient, less stressful future.

In fact, one of the reasons the technology began to blow up in the early 2000s was its application within the medical field.

In fact, one of the reasons the technology began to blow up in the early 2000s was its application within the medical field. Miniature human kidneys, cell-based blood vessels, and organically augmented prosthetics were among the revolutionary developments that spurred massive investment in the field just a couple decades ago. Some of these practices involving building mediums interspersed with bacteria, resulting in an actual, living ink to make up a newly constructed object.

Furthermore, consider the implications of machines that can build copies of themselves out of only the protons and electrons making up the objects around them. Someday, automatons will pre-assemble computers, structures, and even life support systems in situ while preparing for the arrival of humans at exotic, currently unknowable locations like Mars or the ocean floor.

Right now, at standard Earth gravity and atmospheric pressure, there are more than a few different substances used as 3D printer fodder. A readout of popular materials can be a serious alphabet soup: PLA, ABS, PETG, and TPU are some common plastics that see continued use. On the other hand, some projects call for specialized mixtures of metal, carbon-fiber, wooden, or the aforementioned bacterial inclusions, bonded by an oxygen-, ultraviolet-, or laser-hardened polymer.

A huge variety of filaments from which to choose means there's another intricate wrinkle that the enthusiastic engineer must explore, in order to come out with the highest quality components. Extrusion properties, melting points, structural rigidity, and even compatibility with a healthy human white blood cell are important considerations for many pioneers of 3D printing. With any luck, and a solid helping of human spirit and ingenuity, maybe someday engineers will create a real Replicator -- one that's even able to formulate authentic Romulan Ale.

Statistics and Editorial Log

Paid Placements
Rendering Hours

Granular Revision Frequency

Lydia Chipman
Last updated on October 12, 2018 by Lydia Chipman

An itinerant wordsmith with a broad constellation of interests, Lydia Chipman has turned iconoclasm into a livelihood of sorts. Bearing the scars and stripes of an uncommon diversity of experience -- with the notable exceptions of joining a religious order or becoming an artist -- she still can’t resist the temptation to learn something new. Lydia holds a master of arts in English from Georgia Southern University, and a bachelor of arts cum laude in integrative studies from Clayton College. Her expertise is in the areas of robotics, electronics, toys, and outdoors and computer equipment.

Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For more information on our rankings, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.