The 10 Best 3D Printers

video play icon
Best High-End
Best Mid-Range
Best Inexpensive

This wiki has been updated 19 times since it was first published in May of 2015. No longer confined to corporations and the super-rich, 3D printers are poised to disrupt the global economy, as they bring small-scale, rapid prototyping and manufacturing capabilities within the reach of individuals and home-based businesses. From open-source DIY kits to production-ready proprietary systems, they can help you develop cost-effective models, spare parts, and much more. When users buy our independently chosen editorial picks, we may earn commissions to help fund the Wiki. Skip to the best 3d printer on Amazon.

10. Qidi Tech X-One2

9. Dremel DigiLab 3D40 Flex

8. AnyCubic Photon

7. Comgrow Creality Ender 3 Pro

6. Qidi Tech X-Plus

5. Dremel Digilab 3D20

4. Qidi Tech X-Max

3. Qidi Tech X-Pro

2. FlashForge Creator Pro

1. Dremel DigiLab 3D45

Special Honors

Formlabs Fuse 1 This remarkably well-engineered appliance aims to provide industrial-level printing in a benchtop device, and while it hasn't yet hit the market, all indications are that it will vie for supremacy with the best of them. If you need to make reliable, precise, stress-proof prototypes, keep your eye on this incredibly capable machine. formlabs.com

Zortrax M300 Plus A roughly 1-cubic-foot volume makes this costly machine an excellent choice for medium-scale professional models, whether you're making experimental prototypes or fully functional pieces. While it is compatible with third-party systems and materials, its manufacturer goes out of its way to provide impressive functionality from the start to the finish of the design and production processes. zortrax.com

MarkForged Mark 2 If your project requires incredibly strong parts, look to the MarkForged Mark 2, which stands apart from the rest thanks to its ability to incorporate composite fibers such as carbon fiber, Kevlar, and fiberglass into your models. Priced over $10,000, it's geared specifically toward professional engineering applications. markforged.com

Editor's Notes

November 27, 2019:

3D printing has become incredibly accessible to the common consumer in the last few years. If you're just getting started, options like the Qidi Tech X-One2 and Comgrow Creality Ender 3 Pro are basic models that will provide a good introduction to the field. The AnyCubic Photon is similarly affordable and quite reliable, though its volume isn't particularly large and it requires UV hardening for most pieces, and as such is more geared towards artistic use than the creation of functional mechanical components.

Dremel, makers industry-leading hand tools, happen to have a quite successful and high-performing line of printers as well. Their Dremel Digilab 3D20 is the most cost-effective and is noted as a great choice for engineering classrooms although it is somewhat limited in professional use. The Dremel DigiLab 3D40 Flex and Dremel DigiLab 3D45 are considerably larger and reasonably more capable; the 3D40 is unfortunately restricted to the use of only certain filament types, though, and the 3D45 costs a bit much for most consumers.

We want to specifically mention Qidi Tech, one of the best up-and-coming manufacturers around. The Qidi Tech X-One2 is a fantastic entry-level model, the Qidi Tech X-Plus can accomplish a huge range of tasks at reasonable volumes, and the Qidi Tech X-Max can create impressively sized models considering its actually reasonable cost.

And for a wonderfully balanced, highly reliable, and easy-to-use choice, look to the FlashForge Creator Pro, which isn't very expensive but provides more accuracy and consistency than others that cost twice as much. There are also quite a few industrial-level devices available, some of which you'll find in our Special Honors section.

Creating Depth And Innovation

It also removes the difficulty experienced when trying to interpret a person's handwriting.

Printing has made keeping records and two-dimensional visualizations possible. It also removes the difficulty experienced when trying to interpret a person's handwriting. Printing allows for the transfer of photographs and documents from a computer screen to a sheet of paper for archiving and presenting. With the exception of the small amount of toner transferred to paper, a two-dimensional printer cannot create depth or height to whatever is being represented. Depending on your profession, what if you require a printer to do more than just transfer text to paper? A 3D printer gives you the ability to construct a 3D model based on a design concept through the use of different materials, which is something your traditional laser printer cannot accomplish on its own. Think of a 3D printer as a form of technology that brings ideas as well as digital prototypes and models into tangible form.

In the technical sense, a 3D printer leverages a computer-controlled process for synthesizing and constructing an object using multiple layers of different materials to do so. This process is also referred to as additive manufacturing, meaning that material layers are added successively by the printer. These layers are thinly-sliced, horizontal cross-sections of the intended object.

In order to create a 3D object, one needs a blueprint or virtual design of the object. A virtual design takes the form of a computer-aided design file (CAD). The CAD file is created by using 3D modeling software to generate a structural model of the object you want the printer to create. In other words, think of this modeling software as a digital road map that your printer will follow to produce your object. A 3D scanner can also be used to analyze a real object, convert it into an image, and turn that image into a 3D model to be interpreted by your printer.

Once the model is complete, it must then be prepared for your printer. This preparation process is called slicing because the model is being divided (or sliced) into thousands of horizontal, two-dimensional layers that the printer will assemble to create the 3D object that you're after. Once the model has been sliced, its data can then be fed into your printer for construction using a USB stick, SD card, or through your wireless network connection.

Depending on the specific printer you have, several different types of construction methods may be used to produce a 3D object. The difference between these methods is determined by the way in which the individual layers of material are assembled. For example, some production methods use melting or softening of materials to produce these layers, such as fused deposition modeling (FDM). Fused deposition modeling is one of the most common printing methods. Through this method, acrylonitrile butadiene styrene (ABS) or another type of thermoplastic material is melted and deposited in layers through a heated extrusion nozzle to build a 3D object. By contrast, the stereolithography method does not melt materials. Instead, this process focuses an ultraviolet (UV) laser onto a vat of photopolymer resin using a computer-aided design (CAD) file as a guide.

A photopolymer is a large molecule whose properties change when exposed to light. The UV laser is used to draw a pre-programmed design onto the surface of the photopolymer vat. The photopolymer then solidifies wherever the UV light beam touches it, allowing the light to print an object layer by layer. The construction methods and materials used depend on the type of printer you've chosen. Thermoplastics and metal alloys are the most common materials used by 3D printers to produce objects.

A Brief History Of 3D Printers

The earliest 3D printing apparatuses were introduced in the 1980s during a time when this technology was referred to as rapid prototyping. Charles W. Hull invented the first 3D printer in 1986 using the stereolithography method of object creation. Hull also co-founded 3D Systems Corporation, which still innovates and distributes professional 3D printer technology today.

By the middle of the 1990s, new techniques for material deposition by these printers were invented, including micro casting and spraying materials. Throughout the 2000s, additive manufacturing processes continued to mature with a growing focus on the home consumer market and lower costs for the printer technology. Since 2010, the average cost of a 3D printer has decreased considerably, allowing hobbyists to fulfill their dreams of owning the technology. The RepRap project has also encouraged the placement of this technology into more hands with personal interests instead of being restricted to just industrial or medical applications.

Possibilities Abound

Aside from rapid prototyping and quickly turning ideas into tangible objects, 3D printers offer a huge number of advantages across a variety of industries. The medical industry is definitely a big one, considering that medical professionals can use this technology to develop prosthetic devices. For the budding artist or architect, the printer can produce concept models for buildings and sculptures. For the automotive industry, this technology can be used to fabricate extra parts. Even if you're an archaeologist, this type of printer can be a big help to you for reconstructing fossils and artifacts.

On a practical level, things to consider when making this investment include the size of objects you'll need. A printer with a large building space will be necessary, particularly if you need concept models of a certain height for presentations.

Some of the best 3D printers offer compatibility across various operating systems and come with their own software for developing 3D models.

One must be sure to invest in a printer with parts that are relatively easy to replace or service. After all, the technology is a substantial investment with many moving parts.

Statistics and Editorial Log

0
Paid Placements
5
Editors
21
Rendering Hours
58,125
Users
19
Updates

Granular Revision Frequency


Christopher Thomas
Last updated on December 04, 2019 by Christopher Thomas

Building PCs, remodeling, and cooking since he was young, quasi-renowned trumpeter Christopher Thomas traveled the USA performing at and organizing shows from an early age. His work experiences led him to open a catering company, eventually becoming a sous chef in several fine LA restaurants. He enjoys all sorts of barely necessary gadgets, specialty computing, cutting-edge video games, and modern social policy. He has given talks on debunking pseudoscience, the Dunning-Kruger effect, culinary technique, and traveling. After two decades of product and market research, Chris has a keen sense of what people want to know and how to explain it clearly. He delights in parsing complex subjects for anyone who will listen -- because teaching is the best way to ensure that you understand things yourself.


Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For more information on our rankings, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.