The 9 Best Color Blind Glasses

Updated October 18, 2020 by Tina Morna Freitas

This wiki has been updated 27 times since it was first published in October of 2017. Some would say that colors are what bring the world to life and, sometimes, they help make it safer, too. Whether looking at bright red roses, deep green leaves on a tree, a traffic signal, street signs, or electrical wiring, with a pair of the color-blind glasses we've included here, those afflicted with this disorder may be able to differentiate between colors and hues more easily. When users buy our independently chosen editorial choices, we may earn commissions to help fund the Wiki. If you'd like to contribute your own research to Ezvid Wiki, please get started by reviewing this introductory video.

1. Enchroma Atlas

2. Enchroma Receptor Fitover

3. Pilestone TP-022

4. Enchroma Ellis

5. Pilestone Clip-on TP-018

6. Enchroma Northside

7. Pilestone TP-025

8. Vino O2 Amp

9. Pilestone GM-2

Special Honors

The Color Correction System If you want something better than an off-the-shelf option and are willing to pony up the cost for a customized solution, the Color Correction System by Dr. Azman is it. You'll spend time meeting with this color blindness specialist who determine your exact deficiency, and then use a variety of unique tests and filters to create lenses perfectly suited to your personal issues. colormax.org

Editor's Notes

October 16, 2020:

There are multiple kinds of color blindness, plus a wide variation in the degree of the deficiency. Because no color blindness glasses can be guaranteed to be compatible with everyone, it will be necessary to give them a trial of at least 10 hours of wear to truly know if they are helpful; so it's important to purchase from a brand that stands behind their product and offers an excellent return policy.

For this update we continued to focus on the most reliable brands on the market, namely Pilestone and Enchroma. We also kept the Vino O2 Amp, despite it's very distinctive appearance that might not be for everyone, but they are helpful for red/green deficiencies, and the frame is one the most adjustable options available.`

The premium Enchroma offers the best variety of options that look like regular glasses, but we also added the Enchroma Receptor Fitover. Their ability to comfortably sit on top of prescription glasses is especially import for those who want to wear their color-correcting frames all day.

August 26, 2019:

During our research, we determined that there are only three reputable brands that sell high-quality color blind glasses that many buyers report to have worked for them. As such, they are the only ones you'll find on our list. Before we delve into some of the reasons why we liked particular models, we want to take a moment to point out that these cannot make a person see more hues or colors than their eyes can process, rather they can enhance the contrast between certain colors and shades, and also tint colors you may have trouble seeing with enough of a hue that it then becomes a recognizably different shade that your eyes can process. Because of this, these glasses won't make you see what a person without this deficiency can see, however they may make it appear as if the world around you is more colorful.

Essentially, you can break down the items on this list into two categories, budget and premium, and just like any other pair of glasses, the premium models will be generally be better made, though we will admit that the Vino Oxy-Iso are priced towards the higher end of the spectrum, yet have lenses that tend to scratch easily, so they may leave some buyers disappointed.

The best premium color blind glasses are from Enchroma. We have included four of them in our ranking — Atlas, Canyon, Northside, and Ellis. All of these are practically indistinguishable from normal shades, so if you don't want to worry about people noticing you are wearing a vision aid, these are going to be your best choice.

For those who would prefer to save some cash and don't mind if the lenses give away the fact that you are wearing a vision aid, then we recommend you consider a pair of Pilestones. They are generally less than half the price of Enchroma options. They even produce pairs for kids, like the Pilestone TP-022.

Who Can See for Miles

And while we've climbed atop the food chain and directly countered natural selection's unfeeling hand, it hasn't been easy.

The human body is an amazingly complex machine. It's evolved to adapt to conditions that almost no other being can tolerate, possibly excluding cockroaches. And while we've climbed atop the food chain and directly countered natural selection's unfeeling hand, it hasn't been easy. A large part of what makes humans so capable is the variety of ways in which we observe the world, even before we use our relatively massive prefrontal cortex to make sense of all that information.

Among the most important ways we soak in our surroundings is the sense of sight. For the most part, the entire world is set up to accommodate the needs and everyday life of people who can see. It's difficult, if not impossible, for most of us to imagine what it's like to live without sight. But what if we could see almost everything, except one or two particular colors? What impact would that have on day-to-day life?

Color blindness has been around for just as long as Homo Sapiens have, though like most ailments, we've only learned generally how it works in the last few decades. Researchers have determined that it's primarily a genetically induced condition, controlled by an allele located on humans' X chromosome. This explains why the disease affects somewhere from 10 to 20 times as many males as it does females. Even though it's a recessive gene, when a male inherits it, he lacks another X chromosome that may contain a dominant allele that could supersede the afflicted one, leaving the colorblind coding free to affect eyesight development. Furthermore, those of mostly European ancestry are roughly twice as likely to inherit the gene as those of any other regional descent, making this one of the few modern afflictions (of any type: medical, psychological, or societal) that actually does seem to mostly afflict white males. So when someone is a recipient of this unfortunately defective allele, what exactly happens, and why can't that person see certain colors?

Behind Blue Eyes

In order to understand color blindness, you must first understand how the eyes, as well as light itself operates. Visible light, of course, is simply a spectrum of electromagnetic waves, just like entertaining radio waves, harmless microwaves, and dangerous gamma rays. The human eye can register a tiny sliver of the overall electromagnetic spectrum, and it shows up in our field of vision as colors starting at red and ascending in frequency to violet.

For that reason, the brighter our environment, the better our color detection is.

Ancient physicians believed that vision was a nearly magical ray of substance, projected outward from the eyeball. Today we know that sight occurs as light enters the eye, and the lens refracts and focuses that light on the retina, the actual point of contact between electromagnetic radiation and the nervous system. Inside the retina are the workhorses of mammalian vision, photoreceptors known as rods and cones. These cells register the energy levels of present photons and convert them into electrical signals that travel down the optic nerve, to the occipital lobe, where the brain translates the data into viewable images.

Responsible for black and white vision as well as general contrast, rod cells are located mostly on the outer portion of the mostly round retina. These are the most photosensitive cells, able to sense light at remarkably low thresholds. This is why night vision is superior on the peripherals of human vision, which anyone can personally investigate as they sneak around in the dark. Looking slightly to the side of where you're focused will give you more effective night vision than staring straight ahead. That's because in the very center of the retina are cone cells, which enable the detection of color. There are three types of cones — red, green, and blue — and they're somewhere around 1 percent as sensitive to low light as rod cells are. For that reason, the brighter our environment, the better our color detection is.

So, we know how the eye works. When it doesn't work right, we have a general idea of what's happening, and also a few insights on how to fix it.

Eyesight To The Blind

While it has multiple known causes, total color blindness is incredibly rare. Most people know that dogs can't see color, but that's simply because they lack the necessary cone cells to begin with. Complete monochromacy, as it's called, is almost unheard of among humans. The most common type of color blindness, classified as trichromacy, stems from a single type of cone malfunctioning, causing the electrical signals to leave the retina distorted or overlapping. This bad info entering the brain leads to slightly imbalanced impressions of the aforementioned electromagnetic waves. That being said, while we know the "how" of color blindness, the "why" still eludes researchers somewhat; we're able to observe what happens to the occipital system, but we're still learning exactly why it works that way. However, that doesn't stop talented medical engineers from trying to fix the problem and improve countless lives.

Luckily, those incredibly intelligent researchers are constantly gathering data on this biological phenomenon. We've reached the point where we know, based on a patient's personal color-vision abilities, which cones are malfunctioning, and where their signals overlap. This enables optometric engineers to develop a range of lenses to allow afflicted people to see properly. Not entirely unlike your TV's on-screen display, these specialty glasses are able to filter out a user's specific overlapping frequencies, unmasking colors that the person literally had never before seen in their entire life.

As shown by extensive video evidence of patients' first time wearing these special glasses, providing someone with true-to-life eyesight for the first time ever tends to be an incredibly moving and meaningful experience. And as medical technology marches ever onward, we can only expect to treat color blindness more and more effectively as we further understand its causes.

Last updated on October 18, 2020 by Tina Morna Freitas

Tina Morna Freitas is a writer who lives in Chicago with her family and three cats. She has a B.A. in anthropology with a minor in English, and has built a freelance career over the years in writing and digital marketing. Her passions for cooking, decorating and home improvement contribute to her extensive knowledge of all things kitchen and home goods. In addition, her 20 years as a parent inform her expertise in the endless stream of toys and equipment that inevitably takes over the homes of most parents. She also enjoys gardening, making and sipping margaritas, and aspires to be a crazy cat lady once all the children are grown.


Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For more information on our rankings, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.