The 10 Best Gas Detectors

Updated August 04, 2017 by Daniel Imperiale

10 Best Gas Detectors
Best High-End
Best Mid-Range
Best Inexpensive
We spent 39 hours on research, videography, and editing, to review the top selections for this wiki. Whether you are a service engineer or a homeowner looking to protect his or her family from explosive and dangerous emissions, one of these gas detectors will sound the alarm you need to keep any property safe. Pick the one designed to identify the gases you are most concerned about, such as carbon monoxide, methane, butane, or propane. When users buy our independently chosen editorial picks, we may earn commissions to support our work. Skip to the best gas detector on Amazon.

10. General Tools & Instruments PNG2000A Pen

The General Tools & Instruments PNG2000A Pen has a catalytic combustion sensor with two modes of operation that make the unit very simple to operate. It arrives precalibrated with an LED indicator that turns red when gas levels reach 500 PPM.
  • good for home and commercial use
  • compact and easy to carry
  • not sensitive enough for small leaks
Brand General Tools
Model PNG2000A
Weight 5.6 ounces
Rating 3.6 / 5.0

9. Kidde KN-COEG-3 Nighthawk

The Kidde KN-COEG-3 Nighthawk plugs into any AC outlet in your home, and detects both carbon monoxide and dangerous explosive gases. A 9-volt backup battery is also included, so even if the power goes out, you are still safe from harm.
  • very easy to install
  • measures co levels from 30-999 ppm
  • gives too many false alarms
Brand Kidde
Model 21006677-2pk
Weight 2.6 pounds
Rating 4.3 / 5.0

8. First Alert CO615 Dual Power

The First Alert CO615 Dual Power features a multifunctional digital display that shows both carbon monoxide and battery power levels at a glance without you having to push any buttons, so you always know if the area is safe and that the unit is functioning properly.
  • works during power outages
  • power cord is six feet long
  • peak level options are limited
Brand First Alert
Model CO615
Weight 12 ounces
Rating 4.1 / 5.0

7. Kidde KN-COPP-B-LPM

The Kidde KN-COPP-B-LPM battery-operated carbon monoxide meter features a peak-level memory that can recall and display the highest level of gas detected since the unit's last reset. Its freestanding design makes it easy to mount on the wall or to place on a countertop.
  • easy-to-read backlit display
  • 5-year warranty
  • replacing the batteries is a pain
Brand Kidde
Model 21008873
Weight 5.6 ounces
Rating 3.6 / 5.0

6. Funtin Home AirRadio FTH-KBL1

The colored rim around the Funtin Home AirRadio FTH-KBL1 lets you know at a glance whether the air inside your home is safe. It also indicates when the unit is in self-test mode, when there's an error with its sensor, or when there isn't power running to it.
  • produces very few false alarms
  • calibrates automatically
  • lights cannot be deactivated
Brand Funtin Home
Model FTH-I1
Weight 4 ounces
Rating 4.0 / 5.0

5. UEi Test Instruments CD100A

The UEi Test Instruments CD100A is ideal for professional service engineers working in a residential capacity. The light on the tip of its sensor cap illuminates the detection area, which can help you locate the source of a leak.
  • 18-inch gooseneck
  • headphone jack for use in loud areas
  • protective rubber boot
Brand UEi Test Instruments
Model CD100A
Weight 15.2 ounces
Rating 4.1 / 5.0

4. Ridgid 36163 CD-100

The Ridgid 36163 CD-100 lets you combine any of its three alert mechanisms depending on your wants and your environment. These comprise light, sound, and vibration indicators, and you can toggle between them with tremendous ease.
  • adjustable sensitivity
  • 16-inch probe with flexible arm
  • rugged ergonomic design
Brand Ridgid
Model CD-100
Weight 1.3 pounds
Rating 4.9 / 5.0

3. MSA Safety Altair 4X

If you're in the market for a serious piece of scientific equipment, the MSA Safety Altair 4X is it. This unit boasts an industry leading 4-year sensor life with a continuous runtime of up to 24 hours, allowing you to use it for the long haul.
  • drop-safe up to 20 feet
  • high-contrast display
  • rarely requires recalibration
Brand MSA
Model 10107602
Weight 1.5 pounds
Rating 4.7 / 5.0

2. Neartop Household Alarm

The Neartop Household Alarm is designed to emit a piecing 85dB shriek in the event that the level of combustible gases in the home exceeds five percent. Its OLED screen and brightly colored lights make it less of an eyesore around the house than some others.
  • corrosion-resistant circuit board
  • catalytic sensor
  • setup is fast and easy
Brand NEARTOP
Model NT-GDA-003
Weight 10.4 ounces
Rating 4.6 / 5.0

1. Amprobe GSD600

The Amprobe GSD600 was designed to detect leaks within closed piping systems. Its flexible stainless steel probe allows its user to access those hard-to-reach places, while a simple LED array indicates approximate gas concentrations.
  • senses both methane and propane
  • audible alert buzzer
  • automatically calibrates at startup
Brand Amprobe
Model GSD600
Weight 2.5 pounds
Rating 4.5 / 5.0

Understanding The Underlying Technology

Whether you're a mechanical engineer, construction worker, school official, business owner, or you want to keep your family safe from harmful and toxic emissions in your home, a gas detector can mean the difference between safety and potential disasters.

The gas detector is a portable or fixed device designed to measure and indicate the concentration of toxic emissions in the surrounding environment in order to prevent explosions or harmful exposure. Most detectors produce an audible or visual indicator, such as an alarm or series of lights, to signify high levels of gases in a particular area. While older detectors can only produce alerts for one type of gas, modern detectors are multifunctional and capable of detecting several gases at once.

The devices can be used as standalone units to monitor a small working area or they can be linked together to create an entire protection system, depending on the nature of the circumstances and the size of the detection area. Although it might seem that a gas detector's operation is complicated, the fundamental concept underlying its purpose is relatively simple to comprehend. Because it is designed to measure a specified concentration of a harmful gas, its internal sensor technology serves as the reference point (or scale) for determining normal levels versus dangerous ones. When the detector's sensor surpasses a pre-set level, an alarm is triggered to alert the user of potential danger.

Detectors are categorized by the types of gases they detect and the type of sensor technology they use. Both electrochemical and metal oxide semiconductor sensors will detect toxic gases, while catalytic bead and infrared sensors are designed to detect combustible gases. Electrochemical detectors operate via the diffusion of gases through a porous membrane to an electrode where they undergo redox. The degree of electrical current produced by this chemical reaction is determined by how much of a particular gas has been oxidized at the electrode, which ultimately indicates the level of gas concentration. Electrochemical detectors are used to detect carbon monoxide, chlorine and nitrogen oxides. Metal oxide semiconductor (MOS) sensors also detect carbon monoxide and function using a gas-sensitive film that is composed of either tin or tungsten oxides. This film reacts when a certain level of toxic gas is present, triggering the device to alert or warn the user.

Metal oxide sensors are efficient due to their ability to operate in low-humidity ranges. Catalytic sensors detect combustible gases and are constructed from a platinum-treated wire coil. They function via catalytic oxidation, which is really a fancy way of describing the process by which a chemical helps to speed up the process of a reaction without changing its own structure. When a combustible gas comes into contact with the catalytic surface, it is oxidized, while the wiring resistance is changed at the same time through the release of heat. A bridge circuit, like a Wheatstone bridge, is then used to indicate this change in resistance. Infrared sensors operate through the use of transmitters (light sources) and receivers (light detectors), whereby the presence of a gas interferes with the power of a light transmission between the two. This change in light determines both the presence of a gas and its type.

Determining The Best Detection

The type of business, the size of the environment, and the gases that are present are all driving forces behind one's decision to invest in a gas detection system. For example, if you work in a large industrial complex, a welding shop, or any environment with combustible gases around all the time, then fixed catalytic or infrared detectors will certainly come in handy. The same can be said for a fixed detector if you're a homeowner with the need for an easy-to-read display to alert you and your family to the presence of toxic gases. The ability to detect multiple gases is also important, particularly methane and propane.

Portable detectors are beneficial for use in tight spaces and when having to work underground (e.g. in subway systems between station platforms), as they can be battery-operated and easily attached to a worker's tool belt. If you're taking tools with you on the job, having one with a compact design makes it easy to transport and to store.

Testing and calibrating one's chosen gas detector is an important consideration for maintaining safety and confidence that the device (whether it's fixed or portable) is working properly, accurately, and that it will alert you when the need arises.

A Brief History Of Gas Detectors

Prior to the development of electrical sensor technology, the earliest detection methods used around the time of the Industrial Revolution included wet blankets and long wicks lit on fire to detect dangerous pockets of methane gas located in underground coal mines. The dangers of methane come from the fact that it cannot be seen or smelled and that it can appear naturally from underground.

Considering that coal is a fossil fuel still in use to this day, one can understand the dangers first employed to harness its energy using primitive mining techniques. After this detection method proved ineffective, miners then used canaries in coal mines to assist in their detection efforts due to the bird's loud chirp and similarities to the part of the human nervous system that controls breathing. Miners believed that when a canary wasn't doing well, it would begin to shake its cage, alerting them that it wasn't safe to remain inside.

Following use of the canary, the flame light was the next form of gas detection. The flame light was encapsulated inside a shell with an outer glass piece featuring three horizontal line incisions running along its surface. A flame was always started on the middle line in a fresh air environment. If the flame lowered itself toward the bottom line, a miner would know they were in an oxygen-deficient environment. If the flame rose toward the top line, it would signify an oxygen-enriched environment with the possibility for the presence of methane.

The first gas monitor was a valved device showing the level of methane present in the atmosphere and was detected through a sensor called the catalytic diffusion sensor. This sensor would burn the gas inside it, but never allowed the burning process to occur outside of the sensor.

The first electronic household carbon monoxide detectors were developed in the 1980s. Since that time, many electronic devices (fixed and portable) have been developed for a variety of applications to detect, monitor, and alert people to potential gas leaks. This includes the presence of gas detectors inside modern consumer automobiles.



Statistics and Editorial Log

0
Paid Placements
4
Editors
39
Hours
16,630
Users
43
Revisions

Wiki Granular Update & Revision Log


help support our research


Patreonlogoorange psj5g7Wiki ezvid low poly earth xdypeb

Last updated on August 04, 2017 by Daniel Imperiale

Daniel is a writer, actor, and director living in Los Angeles, CA. He spent a large portion of his 20s roaming the country in search of new experiences, taking on odd jobs in the strangest places, studying at incredible schools, and making art with empathy and curiosity.


Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For our full ranking methodology, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.