Updated September 19, 2018 by Christopher Thomas

The 10 Best NiMH Chargers

video play icon
Best High-End
Best Mid-Range
Best Inexpensive

We spent 43 hours on research, videography, and editing, to review the top choices for this wiki. With so many gadgets requiring batteries nowadays, it makes sense to have one of these NiMH chargers on hand to keep all your gear operating and save you from constantly buying costly replacements. Working with a range of battery types, they will ensure your remote controls, cameras, mobile devices, children's toys, and more are always ready for action, while helping to reduce landfill toxins. When users buy our independently chosen editorial picks, we may earn commissions to support our work. Skip to the best nimh charger on Amazon.

10. Panasonic Eneloop BQ-CC55

9. Powerex MH-C800S

8. Superex RPC-C20BK Smart Universal

7. La Crosse Technology BC1000 Alpha

6. Opus BT-C2000

5. Xtar VC4

4. Ansmann Energy 16 Plus

3. Powerex WizardOne

2. Ansmann Energy 4

1. Ansmann Powerline 4 Light

Over 200 Years Of Battery Life

In a return to familiar naming conventions, this became not-so-eloquently known as the voltaic pile, and many historians consider it the first real chemical battery.

In the mid-1700s, US founding father Benjamin Franklin combined layers of glass and metal to form a set of capacitors that enabled his earliest experiments. Breaking from the era's apparent tradition of naming everything after oneself, he called his contraption a battery, because, like a naval battery, it consisted of many parts working together as one unit.

While they may seem complicated or even magical, batteries are just another way to store energy, not unlike a ball resting at the top of a hill. That ball contains a certain amount of potential energy, which we can calclulate based on the grade and height of the incline. A chemical battery acts much the same, except it uses electrons in place of a round ball, and an electrolyte solution instead of a hill.

Of course, when Luigi Galvani first manipulated electricity by means of a dead frog, he didn't know any of that — he attributed the spark to the dubious and since-disproven concept of animal electricity. Luckily, his friend and colleague, Alessandro Volta, was there to set him straight. Obviously, he claimed, this phenomenon came simply from two different types of metal (Galvani's scalpel and working clamps) coming into contact via a moist intermediary (Galvani's unfortunate, amphibious test subject). Volta called this the theory of contact tension, and it is also absolutely incorrect.

Although Volta's reasoning was off, his results told a different story. In the year 1800, he stacked up a series of zinc and copper discs, separating each with a layer of saltwater-soaked cardboard. In a return to familiar naming conventions, this became not-so-eloquently known as the voltaic pile, and many historians consider it the first real chemical battery.

Nearly Endless Potential (Energy)

Many people change a pair of AA batteries without thinking about how they work. And while it's easy to imagine a battery as a fuel tank, but for electronic devices, it's not that simple. Electric charge isn't a physical collection of molecules like water or oxygen; the term specifically describes the presence of free electrons in a system. An everyday battery cell consists of two half-cells, filled with an electrolyte solution, and a positive or negative electrode in either side.

And while it's easy to imagine a battery as a fuel tank, but for electronic devices, it's not that simple.

When fully charged, nearly all of the cell's free electrons are on the anode's side, which also possesses a negative charge, based on its chemical makeup. Just like a ball wants to roll down a hill due to gravity, these electrons want very badly to move to the cathode, as they're attracted to its positive charge. The layer separating the two half-cells, however, is a mostly one-way gate. So when the circuit is complete, i.e. the anode is externally connected to the cathode, electrons are pulled from the very tip of that connection into the positively charged electrode, and the remaining negative ions stored in the anode-side solution begin to shed their extra electrons, which begin to flow through the circuit, turning the stored chemical potential into electrical energy.

Scientists arrived at this basic tenet of electrochemical theory when they observed the corrosion of Volta's electrolyte as well as local, electrical inconsistencies around impurities within the solution. The fluid that bubbled and leaked, they proposed, was the result of forcing current through compounds that didn't share exceptionally stable bonds, a process now known as electrolysis.

It was this understanding that enabled European researchers to charge forth from Volta's early work, to the development of unsealed, dangerous, wet-cell batteries, later advancing to fully enclosed, dry cells as technology allowed. In 1859, Gaston Plante gave the world the lead-acid battery when he inserted lead electrodes into a solution of oxygen in sulfuric acid. Various configurations of lead, manganese, ammonia, and numerous other fun substances contributed to continually increased efficiency over the next 100 years. By the middle of the 20th century, chemical engineers finally nailed a new recipe for efficient, rechargeable storage with a nickel-cadmium composition. As devices called for more power, and cadmium mining became expensive and rife with pollution, nickel-metal hydride cells came to the rescue.

Small Packages With Lots Of Power

There's a nearly endless overall selection of battery sizes, shapes, capacities, and voltages. They come as small as the ones found inside watches, and as large as those found in power plants. When it comes to oft-swapped, interchangeable cells, though, a few formats stand above the rest.

All of these output 1.5 volts; the difference among them is the amount of charge stored, as more volume means a larger electrolytic swimming pool for the eager anions.

The two most popular among most devices are the AA and AAA sizes, with which most people are familiar. Less popular than before, but still relevant, are the C and D sizes. All of these output 1.5 volts; the difference among them is the amount of charge stored, as more volume means a larger electrolytic swimming pool for the eager anions. Additionally, 9-volt batteries are particularly popular among mobile radio devicies such as walkie-talkies and wireless microphone systems, which tend to require more oomph than the smaller, cylindrical cells can provide.

And while it's a simple concept that reversing the charge causes the electrons to flow in reverse, doing so practically can pose challenges. Too much current can cause the intermediate substance (usually potassium hydroxide) to break down, which expels gas, causes excess pressure, and releases impurities into the solution. Incidentally, this is also a common side effect of attempts to recharge primary, non-rechargeable batteries. Despite some units' claims that they're designed to recharge single-use cells, many experts explicitly recommend against doing so.

You'll find a number of useful features on different chargers, some of which will help everyday users, and some of which are meant for more advanced tasks. A quality model can detect a battery's overall health in addition to its current charge, and most can fully discharge cells before refilling them. This prevents them from building up any type of memory, which is one of the main points of concern around NiMH batteries. But with the right charger, a moderate understanding of electricity, and a bit of attention to detail, anyone can be on the path to responsible, portable power. Because listening to music on the move and minimizing chemical waste are both pretty good ideas.

Statistics and Editorial Log

0
Paid Placements
5
Editors
43
Hours
3,686
Users
50
Revisions

Recent Update Frequency


Christopher Thomas
Last updated on September 19, 2018 by Christopher Thomas

Building PCs, remodeling, and cooking since he was young, quasi-renowned trumpeter Christopher Thomas traveled the USA performing at and organizing shows from an early age. His work experiences led him to open a catering company, eventually becoming a sous chef in several fine LA restaurants. He enjoys all sorts of barely necessary gadgets, specialty computing, cutting-edge video games, and modern social policy. He has given talks on debunking pseudoscience, the Dunning-Kruger effect, culinary technique, and traveling. After two decades of product and market research, Chris has a keen sense of what people want to know and how to explain it clearly. He delights in parsing complex subjects for anyone who will listen -- because teaching is the best way to ensure that you understand things yourself.


Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For our full ranking methodology, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.